
Limnetica, 28 (2): x-xx (2008)Limnetica, 28 (2): 273-282 (2009). DOI: 10.23818/limn.28.23
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ABSTRACT

Cyanobacteria and Cyanotoxin in the Billings Reservoir (São Paulo, SP, Brazil)

The Billings Complex and the Guarapiranga System are important strategic reservoirs for the city of São Paulo and surrounding
areas because the water is used, among other things, for the public water supply. They produce 19,000 liters of water per second
and supply water to 5.4 million people. Crude water is transferred from the Taquacetuba branch of the Billings Complex to the
Guarapiranga Reservoir to regulate the water level of the reservoir. The objective of this study was to evaluate the water qua-
lity in the Taquacetuba branch, focusing on cyanobacteria and cyanotoxins. Surface water samples were collected in February
(summer) and July (winter) of 2007. Analyses were conducted of physical, chemical, and biological variables of the water,
cyanobacteria richness and density, and the presence of cyanotoxins. The water was classi�ed as eutrophic-hypereutrophic.
Cyanobacteria blooms were observed in both collection periods. The cyanobacteria bloom was most signi�cant in July, re-
�ecting lower water transparency and higher levels of total solids, suspended organic matter, chlorophyll-a, and cyanobacteria
density in the surface water. Low richness and elevated dominance of the cyanobacteria were found in both periods. Cylin-
drospermopsis raciborskii was dominant in February, with 352 661.0 cel mL−1, and Microcystis panniformis was dominant
in July, with 1 866 725.0 cel mL−1. Three variants of microcystin were found in February (MC-RR, MC-LR, MC-YR), as
well as saxitoxin. The same variants of microcystin were found in July, but no saxitoxin was detected. Anatoxin-a and cylin-
dropermopsin were not detected in either period. These �ndings are of great concern because the water in the Taquacetuba
branch, which is transferred into the Guarapiranga Reservoir, is not treated nor managed. It is recommended that monitoring
be intensi�ed and more effective measures be taken by the responsible agencies to prevent the process of eutrophication and
the consequent development of the cyanobacteria and their toxins.
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RESUMEN

Cianobacterias y Cianotoxinas en el Embalse Billings (São Paulo, Brasil)

El Complejo Billings y el Sistema Guarapiranga son embalses estratégicos importantes para la ciudad de São Paulo (Brasil) y
áreas circundantes porque, entre otras cosas, el agua es utilizada para el abastecimiento público. Este sistema produce 19 mil
litros de agua por segundo, que es suministrado a 5.4 millones de personas. El agua bruta es transferida por el a�uente Ta-
quacetuba desde el Complejo Billings hacia el Embalse Guarapiranga, para regular el nivel de agua del embalse. El objetivo
de este estudio fue evaluar la calidad del agua en el tramo del Taquacetuba, teniendo como foco las cianobacterias y ciano-
toxinas. El muestreo de agua bruta super�cial fue realizado en febrero (verano) y julio (invierno 2007). Fueron analizadas
variables f�́sicas, qu�́micas y biológicas, cianobacteria, riqueza, densidad y la presencia de cianotoxinas. El tramo fue clasi�-
cado como eutró�co-hipereutró�co. Las cianobacterias fueron observadas en ambos periodos de colecta. El crecimiento más
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signi�cativo de algas fue observado en julio, re�ejando baja transparencia del agua y niveles más altos en el agua super�cial
de sólidos totales, materia orgánica, cloro�la-a y densidad de cianobacterias en el agua super�cial. Una baja riqueza y un
elevado dominio de cianobacteria fueron encontrados en ambos per�́odos. Cylindrospermopsis raciborskii fue dominante en
febrero, con 352 661.0 cel mL−1, y Microcystis panniformis fue dominante en julio, con 1 866 725.0 cel mL−1. Tres varieda-
des de microcistina fueron encontradas en febrero (MC-RR, MC-LR, MC- YR), as�́ como saxitoxina. Las mismas variedades
de microcistina fueron encontradas en julio, pero ninguna saxitoxina fue observada. Anatoxina-a y cylindropermopsina no
fueron observadas en ningún per�́odo. Estas conclusiones son preocupantes porque el agua del tramo del Taquacetuba, que
es transferida al Embalse Guarapiranga, no es tratada o manejada. Se recomienda intensi�car el monitoreo y medidas más
e�caces deben ser tomadas por parte de las agencias responsables para prevenir el proceso de eutro�zación y el desarrollo
consiguiente de cianobacterias y sus toxinas.

Palabras clave: Embalses, eutro�zación , cianobacterias, cianotoxinas.

INTRODUCTION

Cyanobacteria blooms in reservoirs, resulting
from the accelerated process of eutrophication,
causes the water to have an unpleasant appearan-
ce, an increase in turbidity, and it changes the �a-
vor and smell of the water. Some of the main ef-
fects due to cyanobacteria blooms comprise a de-
crease in water transparency, heavy �uctuation of
oxygen levels and the release of toxins (Vascon-
celos, 2006). Nowadays, cyanobacteria blooms
and its toxins are the main problem related to the
treatment of public supply water, which can lead
to serious public health problems.

In Brazil, the number of cases of cyanobacteria
blooms in reservoirs designated for public supply
is increasing each year (Andrade, 2005; Azevedo
& Vasconcelos, 2006; Chellappa & Costa, 2003;
Komarek et al., 2002; Sant’Anna & Azevedo,
2000; Tucci & Sant’anna, 2003; Yunes et al.,
2003). The most severe case of intoxication due to
cyanobacterial toxin occurred in 1996 in Caruaru,
Pernambuco State, when around 60 people died
following treatment hemodialysis sessions done
with not well-treated water from a reservoir
which had shown cyanobacterial dominance in the
previous years (Azevedo et al., 1994).

Considering that urban reservoirs used for wa-
ter supply in Brazil have been subjected to fre-
quent cyanobacteria blooms due to several varia-
bles, such as ecological, physiological, and envi-
ronmental, research in this area must be encou-
raged (Calijuri et al., 2006). Therefore, the aim

of this study was to evaluate the water quality in
the Taquacetuba branch of the Billings Reservoir,
focusing on the cyanobacteria and cyanotoxins.

The Billings Reservoir (Fig. 1) is located west
of the city of São Paulo at 23◦47′S, 46◦40′W,
an altitude of 746 m a.s.l. and its watershed co-
vers an area of 560 km2. Its uses include leisu-
re, �sheries, �ow control, domestic and indus-
trial wastewater reception, power generation, and
water supply. The reservoir’s limnological featu-
res changed substantially since 1940, when part
of the polluted water from the Tietê River (São
Paulo city) started to �ow into the Billings Re-
servoir, aiming to increase the water �ow and
consequently, the electric power generation. This
operation, along with the disorganized occupa-
tion of the watershed, contributed to increase the
eutrophication and consequently, the cyanobacte-
rial blooms (Beyruth & Pereira, 2002; Carvalho
et al., 2007; Souza et al., 1998).

Due to its peculiar shape, the Billings Reser-
voir is divided into eight units called branches.
The Taquacetuba branch has a particular use.
In August of 2000, the Basic Sanitation Com-
pany of the State of São Paulo (SABESP) began
to operate a system of transporting crude water
from the Taquacetuba branch to the Guarapiran-
ga Reservoir, with a license for 2.0 m3 s−1. Cu-
rrently it operates at a volume of 3.0 to 4.0 m3s−1,
contributing 29% of the total water produced
in the Guarapiranga Reservoir, which supplies
water to southeastern São Paulo at a rate of
1.2 billion L day−1 (Whately & Cunha, 2006).
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Sao Paulo State

Sao Paulo City

Figure 1. Location of the Billings Reservoir watershed (Taquacetuba branch), State of São Paulo, Brazil. Localización del Embalse
de Billings (rama de Taquacetuba), São Paulo, Brasil.

Therefore, the study of the Taquacetuba branch’s
water quality along with the cyanobacteria com-
munity and its toxins, will contribute to unders-
tand the actual state of degradation of the water
that is transferred into the Billings-Guarapiranga
system, which are important strategic reser-
voirs for the São Paulo city and its surroun-
ding areas, as they produce 19 000 L s−1 of water
to supply 5.4 million people.

METHODOLOGY

Surface water samples were collected in Fe-
bruary (summer) and July (winter) of 2007.
Analyses of dissolved oxygen, total and dis-

solved nutrients, suspended matter, total solids,
chlorophylls a, b, and c, and phaeopigments
(Table 1) were performed. Water transparency
was also determined using a Secchi disk, as well
as water temperature, electrical conductivity (va-
lues corrected to 25 ◦C), and pH with YSI multi-
parameter sensor, model 63/100 FT.

Classi�cation of the trophic state of the bodies
of water was carried out according to the Tro-
phic State Index (TSI) (Carlson, 1977), modi�ed
by Toledo et al. (1983), as follows: oligotrophic
TSI < 44; mesotrophic 44 < TSI < 54; eutrophic
54 < TSI < 74; hypertrophic TSI > 74.

Species composition was analyzed using a
JENAVAL/ZEISS binocular microscope. Counting
was carried out using the sedimentation method
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Table 1. Variables analyzed and their respective detection limits (when applicable), unit, method, and reference. Variables analiza-
das y sus l�́mites de detección respectivos (cuando aplicable), unidad, método, y referencia.

Variable
Detection limit
of the method

Unit Method Reference

Total, organic,
and inorganic

suspended matter (TSM, OSM, ISM) mg ·L−1 Gravimetric Wetzel & Likens (1991)

Total solids (TS) mg ·L−1 Gravimetric

Total nitrogen (TN) < 5.0 μg ·L−1 Spectrophotometry Valderrama (1981)

Total phosphorous (TP) < 10.0 μg ·L−1 Spectrophotometry Valderrama (1981)

Nitrite (N − NO−3 ) < 8.0 μg ·L−1 Spectrophotometry Mackereth et al. (1978)

Nitrate (N − NO−3 ) < 5.0 μg ·L−1 Spectrophotometry Mackereth et al. (1978)

Dissolved ammonium (N − NH+4 ) < 4.2 μg ·L−1 Spectrophotometry Koroleff (1976)

Orthophosphate (Pi) < 10.0 μg ·L−1 Spectrophotometry Strickland & Parsons (1960)

Dissolved oxygen mg ·L−1 Titulometric Golterman et al. (1978)

Chlorophyll a, b, c,
phaeopigments

μg ·L−1 Spectrophotometry
Jeffrey & Humphrey (1975),
Lorenzen (1967),
Strickland & Parsons (1960)

according Utermöhl. The number of chamber cells
counted in each individual sample varied according
to the species accumulation curve. To quantify
cyanobacterial density in indml−1, an individual
was considered a filament, a tricome, a colony, a
cenobium or a cell (for unicellular individuals). To
quantify cyanobacterial density in cell ml−1, the
density based on ind ml−1 was multiplied by the
mean number of cells per individual (calculated
for 30 individual specimens of each species).

For cyanotoxin analysis, water samples were
centrifuged (5000 rpm, 10 min at 4◦C) and the re-
sulting pellet stored at −20 ◦C. Microcystin de-
termination was carried out after sample clean-
up, using solid phase extraction (SPE). Brie�y,
100 mg of the pellet were re-suspended in 10 mL
of water, vortexed for 15 s and subjected to an ul-
trasonic probe for 1 min in an ice bath. After cen-
trifugation (5,000 rpm, 10 min at 4 ◦C), the su-
pernatant was loaded into a C18 cartridge (Sep-
Pak, Waters) previously conditioned with MeOH
(3 mL) and H2O (3 mL). After the sequential wa-
shing with water (3 mL) and MeOH/H2O 30%
(3 mL), toxins were eluted with MeOH (3 mL).
The eluate was dried in a gentle stream of ni-
trogen and reconstituted in 200 μL of MeOH for

LC-MSn Ion Trap analysis. The method propo-
sed by Hiller et al., 2007 was employed for saxi-
toxin, anatoxin-a and cilindrospermopsin analy-
ses.Briefly, 100mg of the pellet were re-suspended
in 1 mL MeOH:Acetic acid 0.1% (1:1), subjec-
ted to an ultrasonic bath for 30 min and centrifu-
ged at 5000 rpm for 10 min. The resulting super-
natant was �ltered and analyzed.

RESULTS

Physical, chemical, and biological variables of
the water

The physical, chemical, and biological variables
of the water are shown in Table 2. The water tem-
perature was higher in February (summer) than
in July (winter), 25.2 ◦C and 19.5 ◦C, respecti-
vely. The water transparency was low in both pe-
riods. Electrical conductivity, pH, and dissolved
oxygen were 145.1 μS cm−1, 7.8 and 7.4 mg L−1

in February, respectively, and 204.1 μS cm−1, 7.6
and 6.2 mg L−1 in July, respectively. Total ni-
trogen concentrations were high in both pe-
riods, measuring 473.6 μg L−1 in February and
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Table 2. Values for the physical, chemical, and biological variables of the water in the Taquacetuba branch of the Billings Reservoir
(São Paulo, Brazil) in February and July, 2007. Valores de las variables f�́sicas, qu�́micas, y biológicas del agua en la rama de
Taquacetuba del Embalse de Billings (Sã o Paulo, Brasil) en febrero y julio de 2007.

Variables February July

Water temperature (◦C) 25.2 19.5

Secchi disc (m) 1.1 0.95

Electrical conductivity (μS cm−1) 145.1 204.1

pH 7.8 7.6

Dissolved oxygen (mg L−1) 7.4 6.2

Total solids (mg L−1) 114.0 339.5

Suspended particulate matter (mg L−1) 8.8 164.0

Suspended particulate organic matter ( %) 88.7 95.1

Suspended particulate inorganic matter ( %) 11.2 4.9

Total nitrogen (μg L−1) 473.6 431.6

Nitrate (μg L−1) 336.8 288.9

Nitrite (μg L−1) 25.7 8.1

Ammonium (μg L−1) 20.1 —

Total phosphorous (μg L−1) 54.6 402.2

N:P ratios 19:1 2:1

Inorganic phosphorous (μg L−1) — 11.7

Chlorophyll a (μg L−1) 33.2 867.0

Chlorophyll b (μg L−1) 5.9 586.4

Chlorophyll c (μg L−1) 0.3 29.9

Phaeophytin (μg L−1) 12.0 310.0

—: below the detection limit of the method

431.6 μg L−1 in July. Among dissolved nitrogen
forms, nitrate levels were higher than nitrite and
ammonium in both periods. Total phosphorous
was considerably higher in July (402.2 μg L−1)
compared to February (54.6 μg L−1). In February,
inorganic phosphate was below the analytic me-
thod limit (< 10 μg L−1), while levels in July we-
re found to be 11.7 μg L−1. Values of total solids,
suspended particulate matter, and its organic frac-
tion were much higher in July compared to those
in February. Algae biomass, represented by con-
centrations of chlorophyll a, b, and c and phaeo-
phytin and the density of cyanobacteria also fo-
llowed this same pattern of higher values in July
and lower values in February. This pattern was
due to an increased cyanobacterial bloom in July.

Trophic state index

According to the Trophic State Index (TSI) for
chlorophyll, the waters of the Taquacetuba branch
were classified as eutrophic in both periods
(February with TSI = 63 and July with TSI = 72),
whereas according to the TSI for total phospho-
rous, they were classified as eutrophic in February
(TSI = 57) and hypereutrophic (TSI = 83) in July.

Cyanobacteria composition and density

A total of 13 taxa of cyanobacteria were iden-
ti�ed, 8 in February and 10 in July (Table 3).
Higher densities of cyanobacteria were found
in July (2 914 035.0 cel mL−1) compared to Fe-
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Table 3. Cyanobacteria taxa and densities in February and
July, 2007, in the Taquacetuba branch of the Billings Reservoir
(São Paulo, Brazil). Taxa de cianobacterias y densidades en fe-
brero y julio de 2007, en la rama de Taquacetuba del Embalse
de Billings (São Paulo, Brasil).

Density (cel mL)

Cyanobacteria taxa February July

Anabaena sp. 0 1 328

A. spiroides 0 416 511

Aphanocapsa sp. 0 1 287

Cylindrospermopsis philippinensis 6 240 0

C. raciborskii 352 661 9 082

Merismopedia tenuissima 12 849 0

Microcystis aeruginosa 14 053 68 840

M. panniformis 0 1 866 725

Microcrocis sp. 21 397 0

Planktothrix agardhii 23 391 147 665

Pseudanabaena sp. 7 804 3 361

P. galeata 9 004 29 508

Woronichinia naegeliana 0 369 729

Total 447 399 2 914 035

bruary (447 399 cel mL−1). In February, the ta-
xa with higher densities were Cylindrosper-
mopsis raciborskii (352 661 cel mL−1), Plank-
tothrix agardhii (23 391.0 cel mL−1), Microcro-
cis sp (21 397 cel mL−1), and Microcystis ae-
ruginosa (14 053 cel mL−1). In July, a high
density of Microcystis panniformis was found
(1 866 725 cel mL−1), followed by Anabaena
spiroides (416 511 cel mL−1), Woronichinia nae-
geliana (369 729 cel mL−1), Planktothrix agar-
dhii (147 665 cel mL−1), and Microcystis aerugi-
nosa (68 840 cel mL−1) (Table 4).

Cyanotoxin analyses

Microcystin analysis showed the presence of
three different variants in both sampling periods,
MC-RR, MC-LR and MC-YR, in different con-
centrations (Table 4). In February, three different
microcystin variants were found (MC-RR, MC-
LR and MC-YR) in concentrations ranging from
0.26-0.47 μg L−1 (7.83-14.15 ng MC/μg Chl a).

Table 4. Results of the microcystin analysis in February and
July, 2007, in the Taquacetuba branch of the Billings Reservoir
(São Paulo, Brazil). Resultados de análisis microcystin en fe-
brero y julio de 2007, en la rama de Taquacetuba del Embalse
de Billings (São Paulo, Brasil).

μμμgMC L−1 ngMC μμμgChl a−1

MC-RR MC-LR MC-YR MC-RR MC-LR MC-YR

February 0.47 0.28 0.26 14.15 8.43 7.83

July 0.55 0.57 0.29 0.64 0.66 0.33

In July, the same microcystin variants were found,
ranging in concentration from 0.29-0.57 μg L−1

(0.33-0.66 ng MC/μg Chl a).
Saxitoxin was detected only in February. Nei-

ther cylindrospermopsin nor anatoxin-a were de-
tected in either of the samples.

DISCUSSION

Analyses of the physical, chemical, and biologi-
cal variables of the water from the Taquacetuba
branch in February (summer) and July (winter)
revealed a marked seasonality.

In this study, the cyanobacterial bloom was
more intense in July (winter) than in February
(summer), re�ecting major electrical conducti-
vity, higher levels of total solids, suspended
particulate matter, total phosphorus, chlorophyll
a, b, c, phaeophytin, and cyanobacteria density.
The dominance of cyanobacteria in nutrient-rich
environments has been associated with a variety
of factors. Environmental factors, such as low
turbulence (Reynolds, 1987), low light (Smith,
1986), low ratio of euphotic zone to mixing zo-
ne (Jensen et al., 1994), high temperature (Sha-
piro, 1990), low CO2/high pH (Caraco & Miller,
1998), high total-P (Falconer, 2005; Watson et
al., 1997), low total-N (Smith, 1983), and phos-
phorus storage strategy (Pettersson et al., 1993),
have all been refereed to as being able to promote
or allow cyanobacterial dominance.

According to Tilman’s (1982) resource-ratio
hypothesis, cyanobacterial dominance had also
been attributed to low N:P ratios (Bulgakov &
Levich, 1999; Hoyos et al., 2004; Smith, 1983;
Tilman et al., 1986). Indeed, in this study, we
observed higher cianobacterial density in July,
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when the N:P ratios were very low. According
to Falconer (2005), phosphorus availability is a
major determinant of growth rate for cyanobac-
teria and has a substantial effect on toxin produc-
tion. However, this pattern was not re�ected in a
higher cyanotoxin production in July. It may sug-
gest that environmental factors (water tempera-
ture and light, for instance) in this period didn’t
favor the production of toxins, despite of the mo-
re intense bloom. The irregularity of the toxicity
of cyanobacteria is not yet de�ned (Carmichael,
1992). Environmental factors such as light, tem-
perature, and nutrients have a large in�uence on
the production of cyanotoxins.

Sant’Anna et al. (2007) yield a study of cya-
nobacteria biodiversity and distribution in reser-
voirs of the upper Tietê River, in which the Bi-
llings Reservoir is located. The authors conclu-
ded that within the results of the physical and
chemical conditions of the reservoirs, Billings
Reservoir proved to be the most favorable envi-
ronment for the development of these organisms.

The abundance and persistent predominance of
cyanobacteria species observed in this study are
probably linked to the high levels of eutrophication
in the Taquacetuba branch, as indicated by the
TSI (eutrophic-hypereutrophic), which re�ected
elevated algae biomass, low water transparency,
very high concentrations of nutrients (total ni-
trogen and phosphorous) and, consequently, se-
riously compromised the use of the water for the
public’s water supply, as well as other uses.

Sant’Anna & Azevedo (2000) and Komarek
et al. (2002) reported cyanobacteria blooms in
Brazil resulting from the increase in nutrients.
According to Tucci & Sant’Anna (2003), Cylin-
drospermopsis raciboskii blooms have been in-
creasingly frequent in Brazilian reservoirs becau-
se of its high competitiveness in eutrophic tro-
pical environments. In an eutrophic reservoir in
Rio Grande do Norte State with high concentra-
tions of inorganic matter, reduced transparency,
anoxic hypolimnion, and high electrical conduc-
tivity, Chellappa & Costa (2003) detected a lar-
ge presence of cyanobacteria (Cylindrospermop-
sis raciborskii, Raphidiopsisi curvata, Microcys-
tis aeruginosa, and Oscillatoria sp) in the dry
season. Azevedo & Vasconcelos (2006) detected

toxic strains of cyanobacteria in bodies of water
including reservoirs used for public water sup-
ply, arti�cial lakes, salt lakes, and rivers in the
states of São Paulo, Rio de Janeiro, Minas Ge-
rais, Paraná, Bahia, and Pernambuco, and in the
Federal District. At these locales, approximately
82% of the strains isolated were found to be to-
xic, with 9.7% being neurotoxic and the rest he-
patotoxic. Minillo et al. (2000) detected the pre-
sence of microcystins in an estuary in Rio Grande
do Sul, Lagoa dos Patos, in the summer and fall
months. Carvalho et al. (2007) detected greater
biodiversity of potentially toxic cyanobacteria in
the Billings Reservoir compared to the Guarapi-
ranga Reservoir. They found 67% of the species
collected in the Billings Reservoir to be potentia-
lly toxic and 50% in the Guarapiranga Reservoir.
Analyses of microcystin confirmed these results, as
microcystin was detected in the Billings Reservoir
throughout the entire study period, whereas in
the Guarapiranga Reservoir, microcystin was only
detected in the samples containingMicrocystis.

Brazilian studies have shown that the most
common toxic cyanobacteria blooms are those
that produces microcystins and saxitoxin, the sa-
me toxins found in the Taquacetuba branch in this
study (Molica & Azevedo, 2009).

Microcystins are produced by several cyano-
bacterial genera, such as Microcystis, Anabae-
na, Planktothrix (Oscillatoria), Nostoc, Hapalo-
siphon, and Anabaenopsis while saxitoxins are
produced by Anabaena, Aphanizomenon, Lyng-
bya, and Cylindrospermopsis (Chorus & Bar-
tram, 1999). A Cylindrospermopsis raciborskii
bloom in February, associated with the presen-
ce of saxitoxin, suggests the production of this
toxin by this species, as already demonstrated in
other freshwater environments in Brazil (Lagos et
al., 1999; Molica et al., 2002). However, further
research is necessary in order to con�rm the ori-
gin of this toxin and to quantify it. The presence
of microcystin in both periods was probably due
to high densitites of Microcystis aeruginosa and
Planktothrix agardhii in February and Microcys-
tis panniformis and also Planktothrix agardhii in
July. A more intense bloom with higher cyano-
bacterial densities in July was related to higher
microcystins concentrations in this period.
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In an eutrophic Brazilian reservoir (Armando Ri-
beiro Gonçalves Reservoir, Rio Grande do Nor-
te State), Costa et al. (2006) detected microcys-
tins concentrations as high as 8.8 μg L−1. An-
drade (2005) found lower concentrations of mi-
crocystins (3.5 μg L−1) at the Guarapiranga Re-
servoir (São Paulo State) and Yunes et al. (2003)
found much lower concentrations of this toxin
(0.03 μg L−1) in the Duro reservoir (Rio Gran-
de do Sul State) and 0.01 μg L−1 of saxito-
xin in the Taiaçupeba reservoir (São Paulo Sta-
te). Most Brazilian reservoirs are in exceptiona-
lly good conditions for the development of to-
xic cyanbacteria: light availability, high tempe-
ratures, water column stability, high water re-
tention time and high nutrient concentrations
(N and P) (Fernandes et al., 2009).

Cyanobacteria density during this study exceeded
the levels for drinking water (> 2 · 103 cellsmL−1)
recommended by the WHO-World Health Or-
ganization (Chorus & Bartram, 1999), and al-
so the limit set by the Brazilian Health Mi-
nistry (20 · 103 cells mL−1) (Brasil, 2004). Due
to the high toxicity of microcystins, WHO es-
tablished the value 1.0 μg L−1 as the maxi-
mum microcystin-LR concentration in drinking
water (Chorus & Bartram, 1999).

Although water from Taquacetuba is not di-
rectly used for water supply, microcystin-LR le-
vel at 0.57 μg L−1 in July is a cause of concern
because of the dif�cult removal of this toxin with
conventional water treatment process (Lambert
et al., 1996). Additionally, raw water containing
1.01 and 1.41 μg L−1 of total microcystins in Fe-
bruary and July, respectively, mean exposures to
doses near the guideline value for the local popu-
lation that uses the reservoir as a recreation site.
This situation should be considered as a serious
public health threat, since prolonged exposure to
microcystins can lead to a higher incidence of
liver cancer (Azevedo, 1998; Chorus & Bartram,
1999). Exposure of the local population through
cyanotoxin accumulation in fish musculature must
also be considered (Magalhães et al., 2001).

The �ndings of the present study are of great
concern. The water in the Taquacetuba branch is
not treated nor managed, and it is channeled in-
to the Guarapiranga Reservoir. Thus, it is recom-

mended that monitoring be intensi�ed, and more
effective measures be taken by the agencies res-
ponsible for the elimination of the causes of the
eutrophication process and the consequent deve-
lopment of cyanobacteria and its toxins.
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�sh from the Jacarepaguá lagoon (Rio de Janeiro,
Brazil): Ecological implication and human health
risk. Toxicon, 39: 1077-1085.

MACKERETH, F. J. H., J. HERON. & J. F. TA-
LLING. 1978. Water analysis: some revised met-
hods for limnologists. Freshwater Biological Asso-
ciation. Scienti�c Association. n. 36. Titus Wilson
& Son Ltda. Kendall. 117 pp.

MINILLO, A., A. H. F. FERREIRA, G. T. YOGUI
& J. S. YUNES. 2000. Concentrações de micro-
cistinas e toxicidade na formas coloniais de Mi-
crocystis aeruginosa de �orações no estuário da
lagoa dos Patos, RS. In: Ecotoxicologia. Perspec-
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